If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-20a+70=0
a = 1; b = -20; c = +70;
Δ = b2-4ac
Δ = -202-4·1·70
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{30}}{2*1}=\frac{20-2\sqrt{30}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{30}}{2*1}=\frac{20+2\sqrt{30}}{2} $
| 6y+11=3 | | 3600-500/2=x | | 20=5(6y-2)=20 | | 3600=x-500/3 | | 3(y)=-9 | | 3600=x+500/3 | | 3p-2/7-p-2/4=2 | | -1f=-2.5 | | 2p-12=18 | | a+7=2a+8 | | 3600=x/3-500 | | 3600=x/3–500 | | 3600=3/x+500 | | 3600=x/3+500 | | 0.01x^2-1=0 | | 36x=x | | 3600=x-500/2 | | 3x+90+x=360 | | 8+15=11+4x | | 9/8=3+x/2 | | 3600=2/x+500 | | 4+2x=7x+21 | | 10t−8t=16 | | 4x²+96x-672=0 | | 3600=2/x-500 | | 3600=x/2-500 | | 9x÷11=83 | | 30+5b(b=4) | | 7x+3=23x-19 | | 1200=x+500 | | t=25+60 | | Y=600+0.4(Y-200)+(20+0.2y)+100 |